Finite-size effects of electron transport in PdCoO2

Abstract

A wide range of unconventional transport phenomena have recently been observed in single-crystal delafossite metals. Here, we present a theoretical framework to elucidate electron transport using a combination of first-principles calculations and numerical modeling of the anisotropic Boltzmann transport equation. Using PdCoO2 as a model system, we study different microscopic electron and phonon scattering mechanisms and establish the mean free path hierarchy of quasiparticles at different temperatures. We treat the anisotropic Fermi surface explicitly to numerically obtain experimentally-accessible transport observables, which bridge between the ‘diffusive’, ‘ballistic’, and ‘hydrodynamic’ transport regime limits. We illustrate that distinction between the ‘quasi-ballistic’, and ‘quasi-hydrodynamic’ regimes is challenging and often needs to be quantitative in nature. From first-principles calculations, we populate the resulting transport regime plots, and demonstrate how the Fermi surface orientation adds complexity to the observed transport signatures in micro-scale devices. Our work provides key insights into microscopic interaction mechanisms on open hexagonal Fermi surfaces and establishes their connection to the macroscopic electron transport in finite-size channels.

Publication
ArXiv
Georgios Varnavides
Postdoctoral Fellow, UC Berkeley
Polina Anikeeva
Polina Anikeeva
Matoula S. Salapatas Professor and Head, Department of Materials Science and Engineering
Professor, Brain and Cognitive Sciences
Director, K. Lisa Yang Brain-Body Center
Associate Investigator, McGovern Institute for Brain Research
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related