One-step optogenetics with multifunctional flexible polymer fibers

Abstract

Optogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities in a single biocompatible platform remains a challenge. We developed a device composed of an optical waveguide, six electrodes and two microfluidic channels produced via fiber drawing. Our probes facilitated injections of viral vectors carrying opsin genes while providing collocated neural recording and optical stimulation. The miniature (<200 μm) footprint and modest weight (<0.5 g) of these probes allowed for multiple implantations into the mouse brain, which enabled opto-electrophysiological investigation of projections from the basolateral amygdala to the medial prefrontal cortex and ventral hippocampus during behavioral experiments. Fabricated solely from polymers and polymer composites, these flexible probes minimized tissue response to achieve chronic multimodal interrogation of brain circuits with high fidelity.

Publication
Nature neuroscience
Seongjun Park
Assistant Professor at KAIST
Yuanyuan Guo
Assistant Professor at Tohoku University
Xiaoting Jia
Assistant Professor at Virginia Tech
Chi Lu
Engineer at Applied Materials
Andres Canales
Researcher at Advanced Silicon Group
Ritchie Chen
Postodoc at Stanford (w/ Karl Deisseroth)
Polina Anikeeva
Polina Anikeeva
Associate Professor in Materials Science and Engineering
Associate Professor in Brain and Cognitive Sciences
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related