Optogenetic control of nerve growth

Abstract

Due to the limited regenerative ability of neural tissue, a diverse set of biochemical and biophysical cues for increasing nerve growth has been investigated, including neurotrophic factors, topography and electrical stimulation. In this report, we explore optogenetic control of neurite growth as a cell-specific alternative to electrical stimulation. By investigating a broad range of optical stimulation parameters on dorsal root ganglia (DRGs) expressing channelrhodopsin 2 (ChR2), we identified conditions that enhance neurite outgrowth by three-fold as compared to unstimulated or wild-type (WT) controls. Furthermore, optogenetic stimulation of ChR2 expressing DRGs induces directional outgrowth in WT DRGs co-cultured within a 10 mm vicinity of the optically sensitive ganglia. This observed enhancement and polarization of neurite growth was accompanied by an increased expression of neural growth and brain derived neurotrophic factors (NGF, BDNF). This work highlights the potential for implementing optogenetics to drive nerve growth in specific cell populations.

Publication
Scientific reports
Seongjun Park
Assistant Professor at KAIST
Ryan A Koppes
Assistant Professor at Northeastern University
Ulrich P Froriep
Project Director at Fraunhofer Institute
Xiaoting Jia
Assistant Professor at Virginia Tech
Polina Anikeeva
Polina Anikeeva
Matoula S. Salapatas Professor and Head, Department of Materials Science and Engineering
Professor, Brain and Cognitive Sciences
Director, K. Lisa Yang Brain-Body Center
Associate Investigator, McGovern Institute for Brain Research
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related