Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films

Abstract

The degree of interpenetration at the interface between colloidal quantum dots (QDs) and organic semiconductor molecules commonly employed in hybrid light-emitting devices (QD-LEDs) has been examined using tapping-mode atomic force microscopy. Both phase separation-driven and Contact Printing-enabled QD/semiconductor heterojunction fabrication methodologies lead to significant QD embedment in the underlying organic film with the greatest degree of QD penetration observed for QD monolayers that have been contact printed. The relative performance of QD-LEDs fabricated via three different methods using the same materials set has also been investigated.

Publication
Nano letters
Polina Anikeeva
Polina Anikeeva
Professor in Materials Science and Engineering
Professor in Brain and Cognitive Sciences
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related