Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling


Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, an extension of this concept, magnetothermal multiplexing is demonstrated, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.

Advanced Functional Materials
Junsang Moon
Process Engineer, Applied Materials
Michael G Christiansen
Postdoc at ETH Zurich (w/ Simone Schuerle)
Siyuan Rao
Assistant Professor at UMass Amherst

Dr. Rao is a material engineer using her expertise in chemistry and biophysics to invent engineering tools for the study in neuroscience.

Dekel Rosenfeld
Zuckerman Faculty Scholar, Tel Aviv University
Danijela Gregurec
Assistant Professor at Friedrich Alexander University
Georgios Varnavides
Postdoctoral Fellow, UC Berkeley
Pohan Chiang
Assistant Professor at National Chiao Tung University
Seongjun Park
Assistant Professor at KAIST
Polina Anikeeva
Polina Anikeeva
Professor in Materials Science and Engineering
Professor in Brain and Cognitive Sciences
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.