Contact printing of quantum dot light-emitting devices

Abstract

We demonstrate a solvent-free contact printing process for deposition of patterned and unpatterned colloidal quantum dot (QD) thin films as the electroluminescent layers within hybrid organic-QD light-emitting devices (QD-LEDs). Our method benefits from the simplicity, low cost, and high throughput of solution-processing methods, while eliminating exposure of device structures to solvents. Because the charge transport layers in hybrid organic/inorganic QD-LEDs consist of solvent-sensitive organic thin films, the ability to avoid solvent exposure during device growth, as presented in this study, provides a new flexibility in choosing organic materials for improved device performance. In addition, our method allows us to fabricate both monochrome and red−green−blue patterned electroluminescent structures with 25 μm critical dimension, corresponding to 1000 ppi (pixels-per-inch) print resolution.

Publication
Nano letters
Polina Anikeeva
Polina Anikeeva
Matoula S. Salapatas Professor and Head, Department of Materials Science and Engineering
Professor, Brain and Cognitive Sciences
Director, K. Lisa Yang Brain-Body Center
Associate Investigator, McGovern Institute for Brain Research
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related