Remote-controlled mice

Abstract

What if expression of a light-sensitive protein could be triggered wirelessly, on demand? What if optogenetics and neuropharmacology could be implemented in an untethered, freely moving animal model? Such technology would allow for a plethora of neurobiological experiments that are currently confounded by repeated animal handling, tissue-damaging cannulas, and tangled optical cables. In the July 30 issue of Cell, Jeong and colleagues introduce such a technology. The ultrathin and flexible devices, termed wireless optofluidic probes, enable remote control of drug infusion and optical manipulation in the deep-brain regions of freely moving mice engaged in behavioral tasks (Jeong et al., 2015) (Figure 1).

Publication
Cell systems
Polina Anikeeva
Polina Anikeeva
Professor in Materials Science and Engineering
Professor in Brain and Cognitive Sciences
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Xiaoting Jia
Assistant Professor at Virginia Tech