Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum

Abstract

Improvements in quantum dot light-emitting device (QD-LED) performance are achieved by the choice of organic charge transporting layers, by use of different colloidal QDs for the different parts of the visible spectrum, and by utilizing a recently demonstrated robust QD deposition method. Spectrally narrow electroluminescence of our QD-LEDs is tuned over the entire visible wavelength range from λ = 460 nm (blue) to λ = 650 nm (deep red). By printing close-packed monolayers of different QD types inside an identical QD-LED structure, we demonstrate that different color QD-LEDs with QDs of different chemistry can be fabricated on the same substrate. We discuss mechanisms responsible for efficiency increase for green (4-fold) and orange (30%) QD-LEDs as compared to previous reports and outline challenges associated with achieving high-efficiency blue QD-LEDs.

Publication
Nano Letters
Polina Anikeeva
Polina Anikeeva
Associate Professor in Materials Science and Engineering
Associate Professor in Brain and Cognitive Sciences
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related