Hormone Release

Abnormal levels of stress hormones such as adrenaline and cortisol are linked to a variety of mental health disorders, including depression and PTSD. MIT researchers, including the Anikeeva group, have now devised a way to remotely control the release of these hormones from the adrenal gland using magnetic nanoparticles.

To achieve control over hormone release, Dekel Rosenfeld, an MIT-Technion postdoc in Professor Anikeeva’s group, has developed specialized magnetic nanoparticles that can be injected into the adrenal gland. When exposed to a weak magnetic field, the particles heat up slightly, activating heat-responsive channels that trigger hormone release. This technique can be used to stimulate an organ deep in the body with minimal invasiveness.

The researchers now plan to use this approach to study how hormone release affects PTSD and other disorders, and they say that eventually it could be adapted for treating such disorders. This method would offer a much less invasive alternative to potential treatments that involve implanting a medical device to electrically stimulate hormone release, which is not feasible in organs such as the adrenal glands that are soft and highly vascularized.

Read the full story

Dekel Rosenfeld
Dekel Rosenfeld
Postdoctoral Associate

Postocotoral associate, focusing on organ modulation such as on demand control of hormone release from adrenal glands and investigation of the gut-to-brain axis.

Alexander W Senko
Data scientist at Livongo
Junsang Moon
Junsang Moon
Graduate Student

Graduate Student

Georgios Varnavides
Georgios Varnavides
Graduate Student

Full-time graduate student | Part-time design enthusiast | Aspiring cat herder.

Danijela Gregurec
Assistant Professor at Friedrich Alexander University
Florian Koehler
Florian Koehler
Graduate Student

Neuroengineer

Michael G Christiansen
Postdoc at ETH Zurich (w/ Simone Schuerle)
Polina Anikeeva
Polina Anikeeva
Associate Professor in Materials Science and Engineering
Associate Professor in Brain and Cognitive Sciences
Associate Director, Research Laboratory of Electronics

My goal is to combine the current knowledge of biology and nanoelectronics to develop materials and devices for minimally invasive treatments for neurological and neuromuscular diseases.

Related